Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Hermitian and Related Structures
نویسندگان
چکیده
We derive a formula for the backward error of a complex number λ when considered as an approximate eigenvalue of a Hermitian matrix pencil or polynomial with respect to Hermitian perturbations. The same are also obtained for approximate eigenvalues of matrix pencils and polynomials with related structures like skew-Hermitian, ∗-even and ∗-odd. Numerical experiments suggest that in many cases there is a significant difference between the backward errors with respect to perturbations that preserve structure and those with respect to arbitrary perturbations. AMS subject classification. 15A22, 15A18, 47A56, 15A60, 65F15, 65F30, 93C73.
منابع مشابه
Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures
We derive formulas for the backward error of an approximate eigenvalue of a ∗palindromic matrix polynomial with respect to ∗-palindromic perturbations. Such formulas are also obtained for complex T -palindromic pencils and quadratic polynomials. When the T -palindromic polynomial is real, then we derive the backward error of a real number considered as an approximate eigenvalue of the matrix po...
متن کاملStructured Backward Error Analysis of Linearized Structured Polynomial Eigenvalue Problems
We start by introducing a new class of structured matrix polynomials, namely, the class of MA-structured matrix polynomials, to provide a common framework for many classes of structured matrix polynomials that are important in applications: the classes of (skew-)symmetric, (anti-)palindromic, and alternating matrix polynomials. Then, we introduce the families of MAstructured strong block minima...
متن کاملOn backward errors of structured polynomial eigenproblems solved by structure preserving linearizations
First, we derive explicit computable expressions of structured backward errors of approximate eigenelements of structured matrix polynomials including symmetric, skew-symmetric, Hermitian, skew-Hermitian, even and odd polynomials. We also determine minimal structured perturbations for which approximate eigenelements are exact eigenelements of the perturbed polynomials. Next, we analyze the effe...
متن کاملStructured Eigenvalue Condition Number and Backward Error of a Class of Polynomial Eigenvalue Problems
We consider the normwise condition number and backward error of eigenvalues of matrix polynomials having ⋆-palindromic/antipalindromic and ⋆-even/odd structure with respect to structure preserving perturbations. Here ⋆ denotes either the transpose T or the conjugate transpose ∗. We show that when the polynomials are complex and ⋆ denotes complex conjugate, then to each of the structures there c...
متن کاملConditioning and Backward Error of Block-symmetric Block-tridiagonal Linearizations of Matrix Polynomials
For each square matrix polynomial P (λ) of odd degree, a block-symmetric block-tridiagonal pencil TP (λ), in the family of generalized Fiedler pencils, was introduced by Antoniou and Vologiannidis in 2004, and a variation RP (λ) of this pencil was introduced by Mackey et al. in 2010. These two pencils have several appealing properties, namely they are always strong linearizations of P (λ), they...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 35 شماره
صفحات -
تاریخ انتشار 2014